

IPv6 Security

RIPE NCC Days - Sofia

June 2023

Overview

- IPv6 Security vs IPv4 Security
- Reachability of IPv6 Addresses
- Network Scanning in IPv6
- Attacks on IPv6
- IPv6 vs IPv4
- IPv6 Support
- IPv4-Only Networks
- IPv6 Security Resources

IPv6 Security Statements

Reason:

• RFC 4294 - IPv6 Node Requirements: IPsec **MUST**

Reality:

- RFC 8504 IPv6 Node Requirements: IPsec **SHOULD**
- IPsec available. Used for security in IPv6 protocols.

A change of mindset is necessary

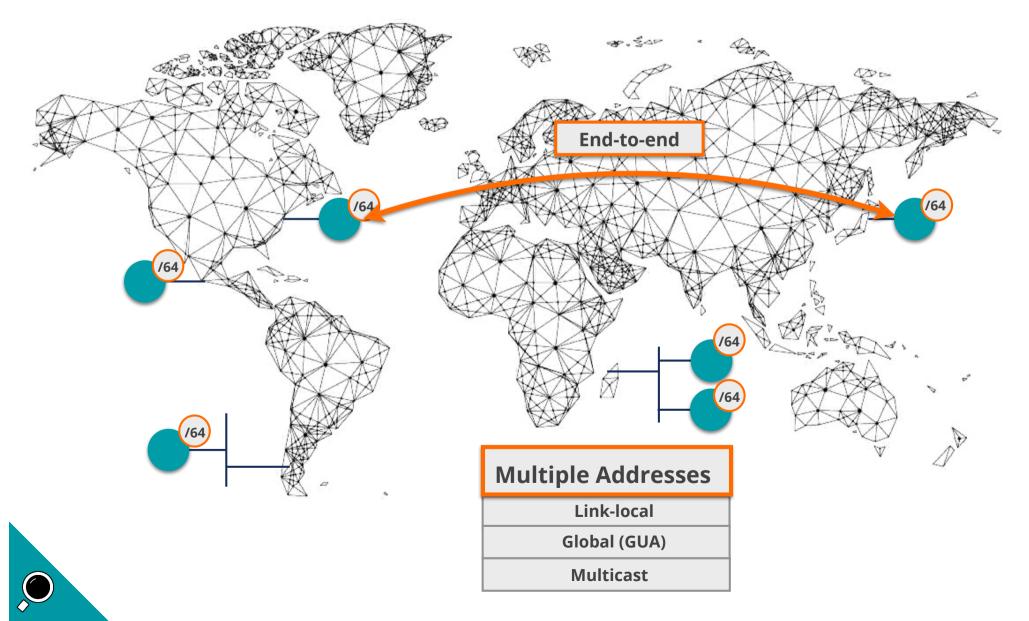
- IPv6 is not more or less secure than IPv4
- Knowledge of the protocol is the best security measure

For a Good Level of Security

1	Best security tool is knowledge
2	IPv6 security is a moving target
3	IPv6 is happening: need to know about IPv6 security
4	Cybersecurity challenge: Scalability IPv6 is also responsible for Internet growth

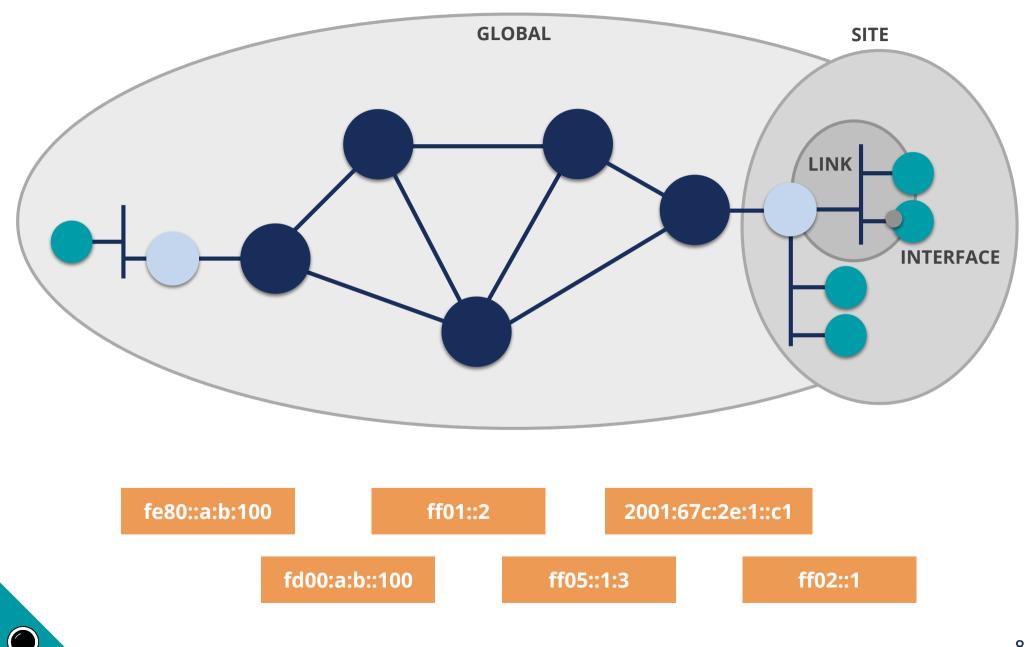
IPv6 Security Statements

Reason:


• End-2-End paradigm. Global addresses. No NAT.

Reality:

- Global addressing does not imply global reachability.
- You are responsible for reachability (filtering).



340,282,366,920,938,463,463,374,607,431,768,211,456

IPv6 Address Scope

Special / Reserved IPv6 Addresses

Name IPv6 Address		Comments	
Unspecified	::/128	When no address available	
Loopback	::1/128 For local communications		
IPv4-mapped	::ffff:0:0/96	For dual-stack sockets. Add IPv4 address 32 bits	
Documentation	2001:db8::/32	RFC 3849	
IPv4/IPv6 Translators	64:ff9b::/96	RFC 6052	
Discard-Only Address Block		RFC 6666	
Teredo	2001::/32	IPv6 in IPv4 Encapsulation Transition Mechanis	
6to4	2002::/16	IPv6 in IPv4 Encapsulation Transition Mechanism	
ORCHID	2001:10::/28	Deprecated RFC 5156	
Benchmarking	2001:2::/48	RFC 5180	
Link-local	fe80::/10	RFC 4291	
Unique-local	fc00::/7	RFC 4193	
6Bone 3ffe::/16, 5f00::/8		Deprecated RFC 3701	
IPv4-compatible	::/96	Deprecated RFC 5156	

http://www.iana.org/assignments/iana-ipv6-special-registry/

Security Tips

- Use hard to guess IIDs
 - RFC 7217 better than Modified EUI-64
 - RFC 8064 establishes RFC 7217 as the default
- Use **IPS/IDS** to detect scanning
- Filter packets where appropriate
- Be careful with routing protocols
- Use "default" /64 size IPv6 subnet prefix

Filtering in IPv6 is very Important!

• A good addressing plan

Easier filtering!

New Filters to Take Into Account

- ICMPv6
- IPv6 Extension Headers
- Fragments Filtering
- Transition mechanisms (TMs) / Dual-Stack

FILTER ICMPv6 CAREFULLY! Used in many IPv6 related protocols

Filtering ICMPv6

Type - Code	Description	Action
Type 1 - all	Destination Unreachable	ALLOW
Туре 2	Packet Too Big	ALLOW
Type 3 - Code 0	Time Exceeded	ALLOW
Type 4 - Code 0, 1 & 2	Parameter Problem	ALLOW
Туре 128	Echo Reply	ALLOW for troubleshoot and services. Rate limit
Туре 129	Echo Request	ALLOW for troubleshoot and services. Rate limit
Types 131,132,133, 143	MLD	ALLOW if Multicast or MLD goes through FW
Туре 133	Router Solicitation	ALLOW if NDP goes through FW
Туре 134	Router Advertisement	ALLOW if NDP goes through FW
Туре 135	Neighbour Solicitation	ALLOW if NDP goes through FW
Туре 136	Neighbour Advertisement	ALLOW if NDP goes through FW
Туре 137	Redirect	NOT ALLOW by default
Туре 138	Router Renumbering	NOT ALLOW

More on RFC 4890 - https://tools.ietf.org/html/rfc4890

Filtering Extension Headers

- Firewalls should be able to:
 - 1. Recognise and filter some **EHs** (example: **RHO**)
 - 2. Follow the **chain of headers**
 - 3. Not allow **forbidden combinations** of headers

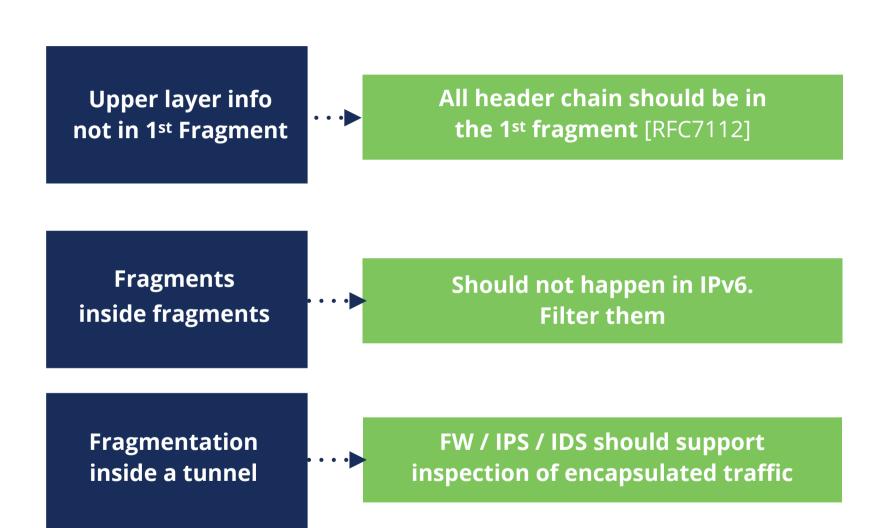
Filtering Fragments

Upper layer info not in 1st fragment

Creates many tiny fragments to go through filtering / detection

Fragments inside fragments

Several fragment headers


Fragmentation inside a tunnel

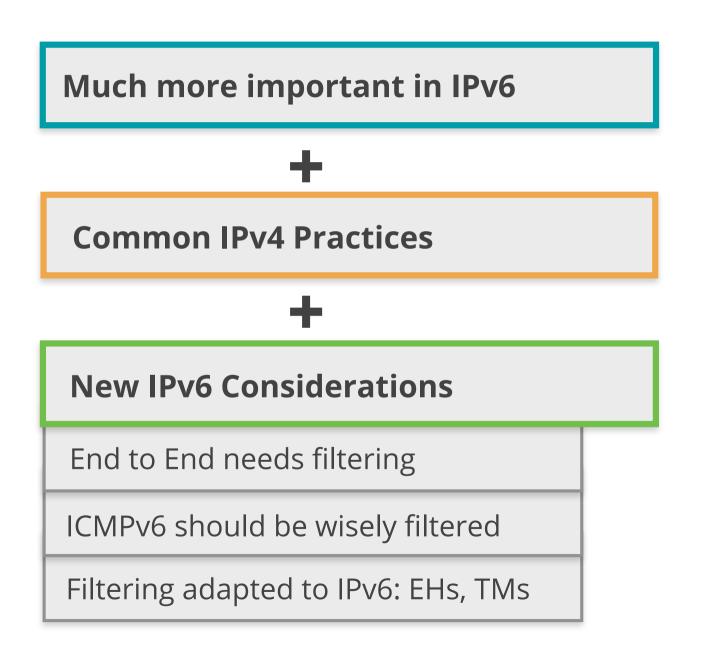
External header hides fragmentation

Filtering Fragments

17

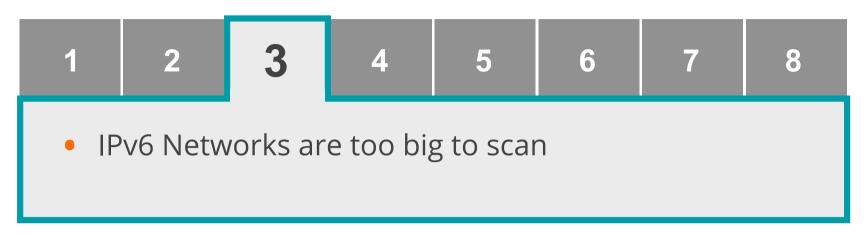
Filtering TMs / Dual-stack

Technology	Filtering Rules	
Native IPv6	EtherType 0x86DD	
6in4	IP proto 41	
6in4 (GRE)	IP proto 47	
6in4 (6-UDP-4)	IP proto 17 + IPv6	
6to4	IP proto 41	
6RD	IP proto 41	
ISATAP	IP proto 41	
Teredo	UDP Dest Port 3544	
Tunnel Broker with TSP	(IP proto 41) (UDP dst port 3653 TCP dst port 3653)	
ΑΥΙΥΑ	UDP dest port 5072 TCP dest port 5072	


More on RFC 7123 - https://tools.ietf.org/html/rfc7123

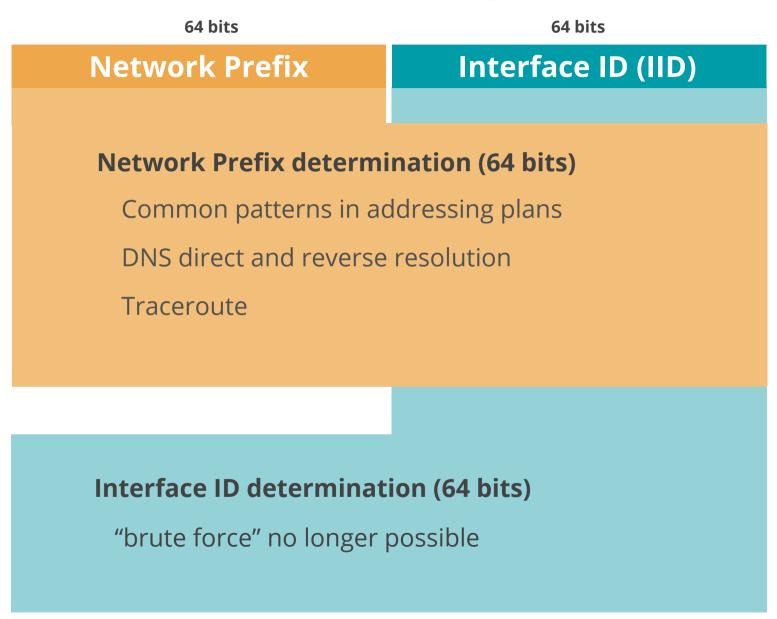
IANA Protocol Numbers -

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml


IPv6 Packet Filtering

IPv6 Security Statements

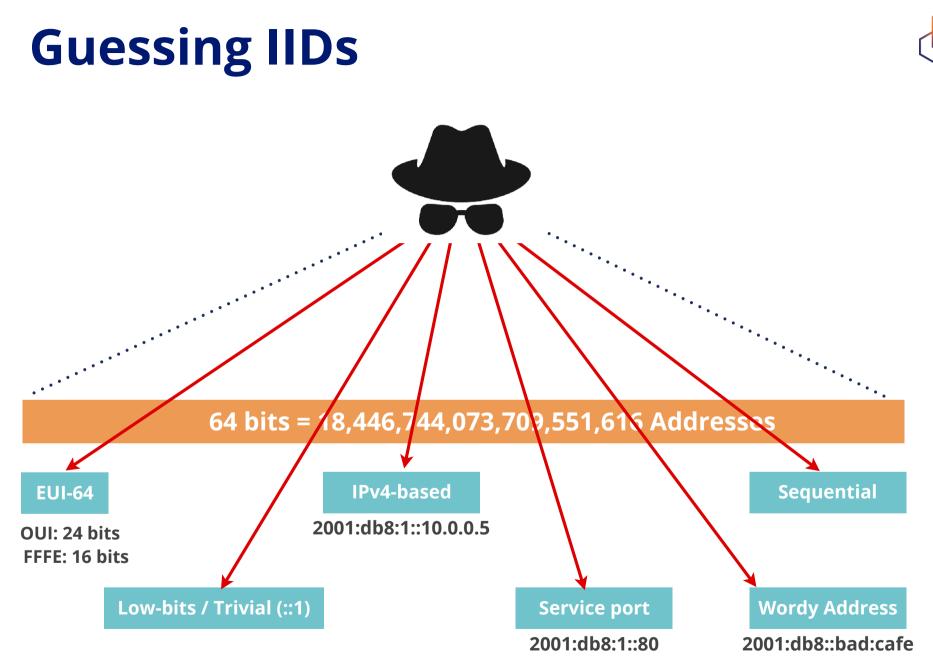
Reason:


- Common LAN/VLAN use /64 network prefix
- 18,446,744,073,709,551,616 hosts

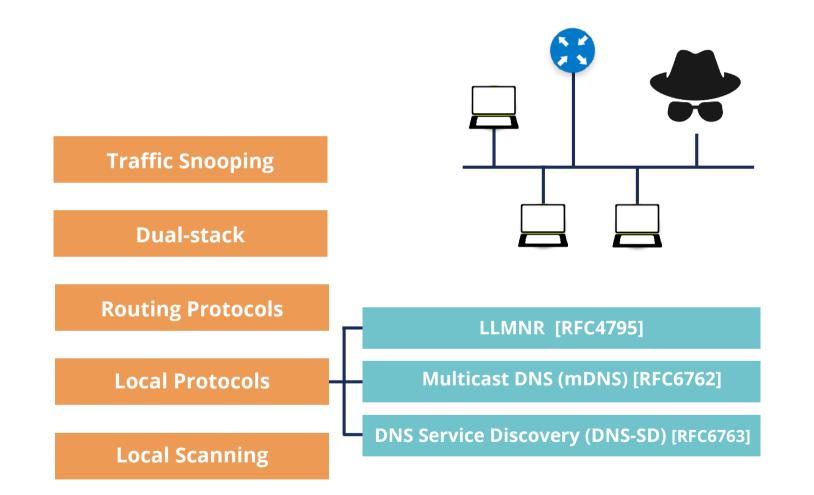
Reality:

- Brute force scanning is not possible [RFC5157]
- New scanning techniques

IPv6 Network Scanning


IID Generation Options

64 bits

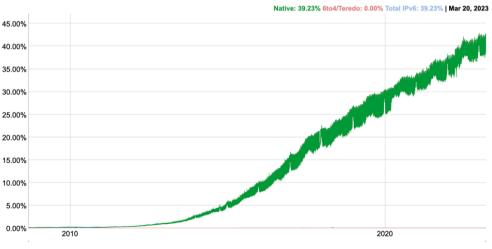

Interface ID (IID)	
Modified EUI-64 (uses MAC address)	"stable" IID
Stable, semantically opaque [RFC72]	for SLAAC
Temporary Address Extensions [RFC8	981] "temporary" IID for SLAAC
DHCPv6	
Manually	
Others (CGA, HBA)	

Locally Scanning IPv6 Networks

IPv6 Security Statements

Reason:

Lack of knowledge about IPv6 (*it's happening!*)


Reality:

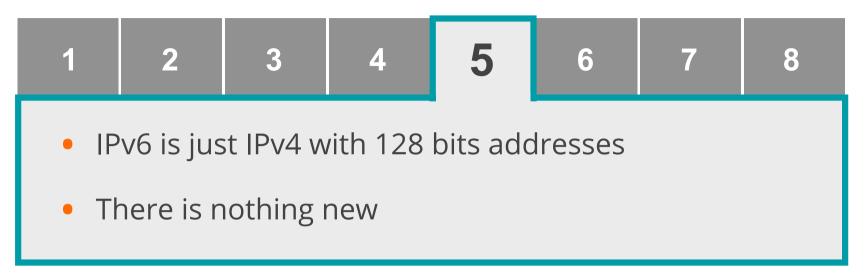
- There are tools, threats, attacks, security patches, etc.
- You have to be prepared for IPv6 attacks

IPv6 is happening...

✓ RANK	IPV6%	COUNTRY / REGION
1	100%	Bahrain
2	55.7%	Montserrat
3	55.7%	Saudi Arabia
4	54.9%	India
5	53.9%	Uruguay
6	53%	France
7	53%	Malaysia
8	52.1%	Germany
9	50.7%	Greece
10	50.4%	United States
11	50.1%	Puerto Rico
12	50%	Viet Nam
13	48.6%	Belgium
14 46.4%		Japan


Show 10 v entries		Search:		
Rank 🔺	Participating Network	ASN(s)	IPv6 deployment	
1	RELIANCE JIO INFOCOMM LTD	55836, 64049	92.58%	
2	<u>Comcast</u>	7015, 7016, 7725, 7922, 11025, 13367, 13385, 20214, 21508, 22258, 22909, 33287, 33489, 33490, 33491, 33650, 33651, 33652, 33653, 33654, 33655, 33656, 33657, 33659, 33660, 33661, 33662, 33664, 33665, 33666, 33667, 33668, 36732, 36733	73.62%	
3	Combined US Mobile Carriers	3651, 6167, 10507, 20057, 21928, 22394	87.74%	
4	Charter Communications	7843, 10796, 11351, 11426, 11427, 12271, 20001, 20115, 33363	56.41%	
5	ATT	6389, 7018, 7132	72.32%	
6	T-Mobile USA	21928	92.31%	
7	Deutsche Telekom AG	3320	74.48%	
8	Orange Business Services	3215	74.08%	
9	Verizon Wireless	6167, 22394	83.58%	
10	<u>Claro Brasil</u>	4230, 28573	74.53%	
	Showing 1 to 10 of 345 entries	First Previous 1 2 3 4 5	Next Last	

Source: http://worldipv6launch.org/measurements/ (22/3/2023)



... and so are IPv6 Security threats! 😥

IPv6 Security Statements

Reason:

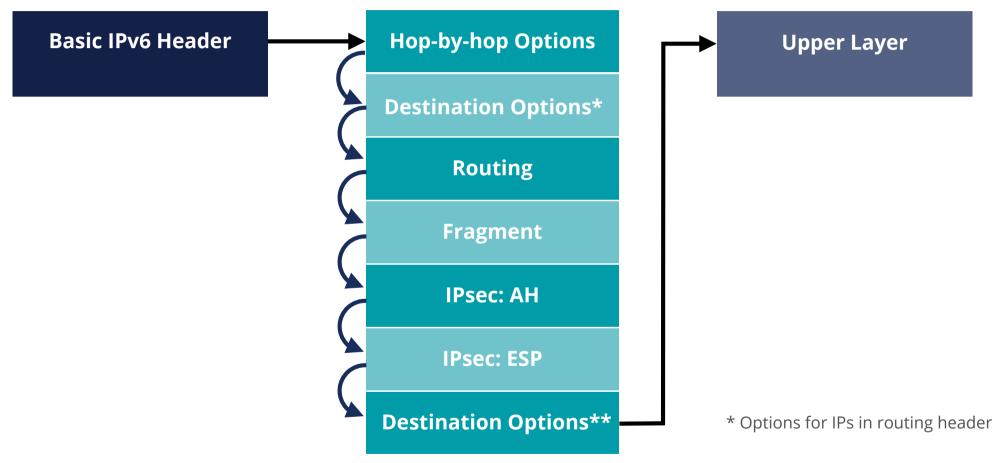
• Routing and switching work the same way

Reality:

- Whole new addressing architecture
- Many associated new protocols

IPv6 vs IPv4

- IPv6 quite similar to IPv4, many reusable practices
- IPv6 security compared with IPv4:


No changes with IPv6

Changes with IPv6

New IPv6 issues

IPv6 Extension Headers

** Options for destination IP

- Flexibility means **complexity**
- Security devices / software must process the full chain of headers
- Firewalls must be able to filter based on
 Extension Headers

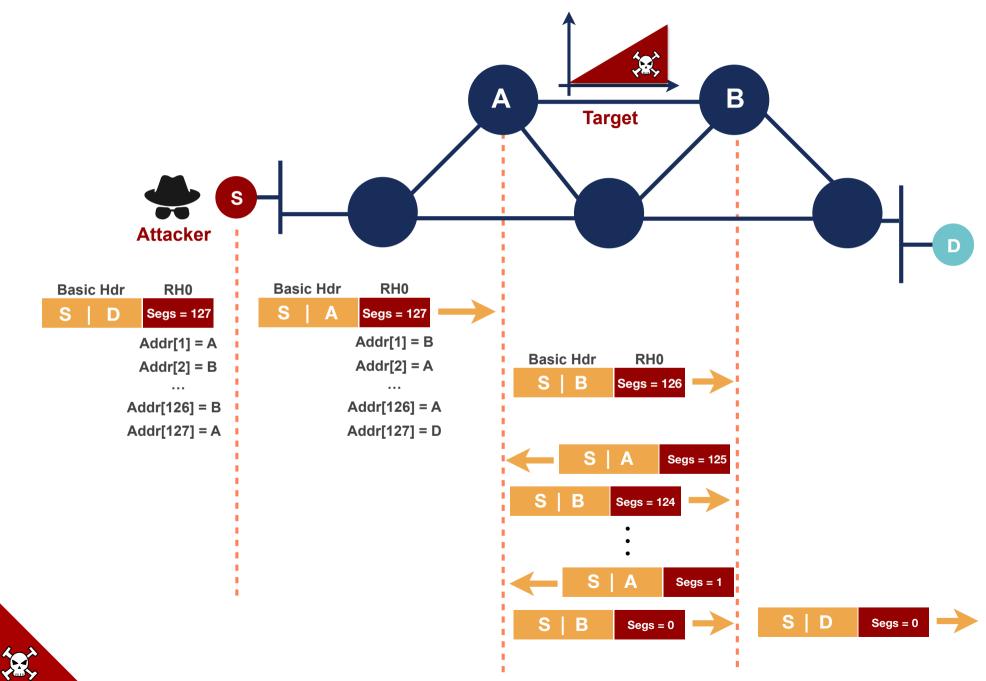
Routing Header

Includes one or more IPs that should be "visited" in the path

- Processed by the **visited routers**

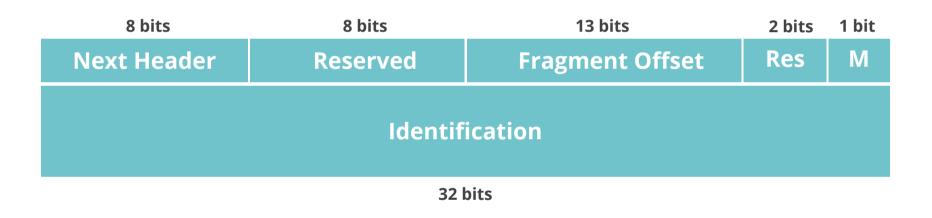
8 bits	8 bits	8 bits	8 bits	
Next Header	Length	Routing Type	Segments Left	
Specific data of that Routing Header type				

Routing Header Threat



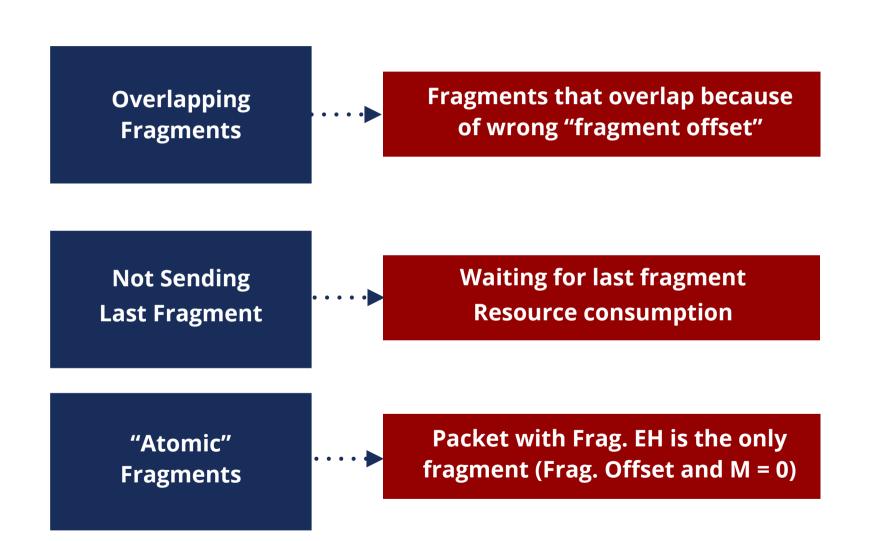
- Routing Header (Type 0):
 - RH0 can be used for traffic amplification over a remote path
- **RH0 Deprecated** [*RFC5095*]
 - RH1 deprecated. RH2 (MIPv6), RH3 (RPL) and RH4 (SRH) are valid

Extension Headers Solutions


• Require security tools to inspect Header Chain properly

Fragment Header

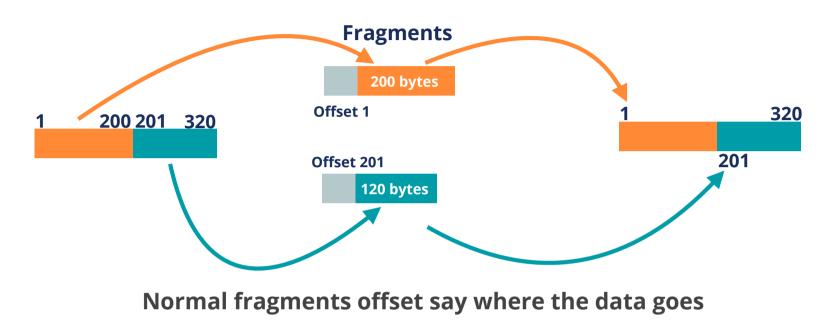
- Used by IPv6 source node to send a packet **bigger than path MTU**
- **Destination host** processes fragment headers

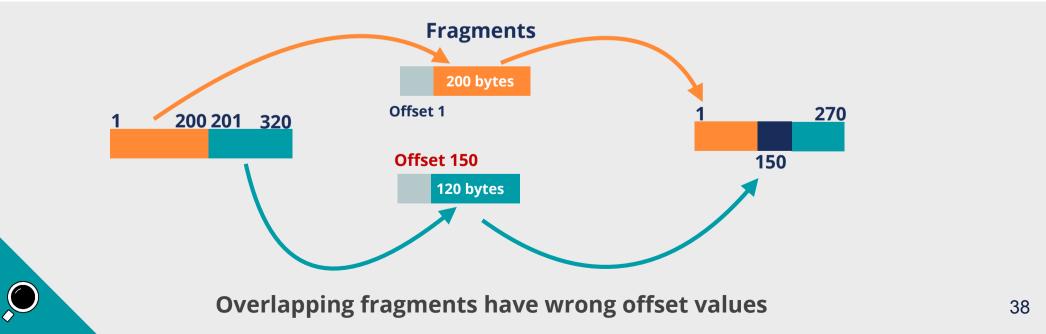


M Flag:

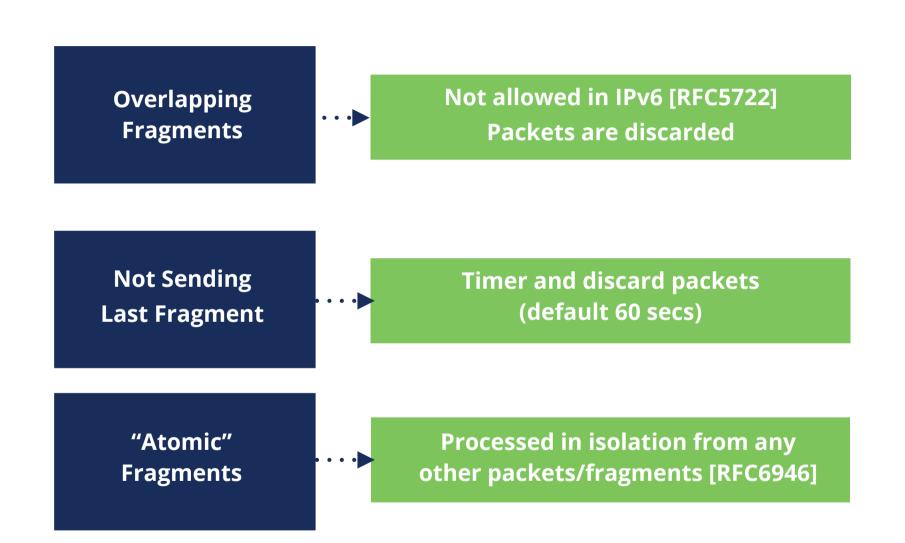
- 1 = more fragments to come;
- 0 = last fragment

EH Threats: Fragmentation





Overlapping Fragments



EH Solutions: Fragmentation

39

Bypassing RA Filtering/RA-Guard

Using **any** Extension Header

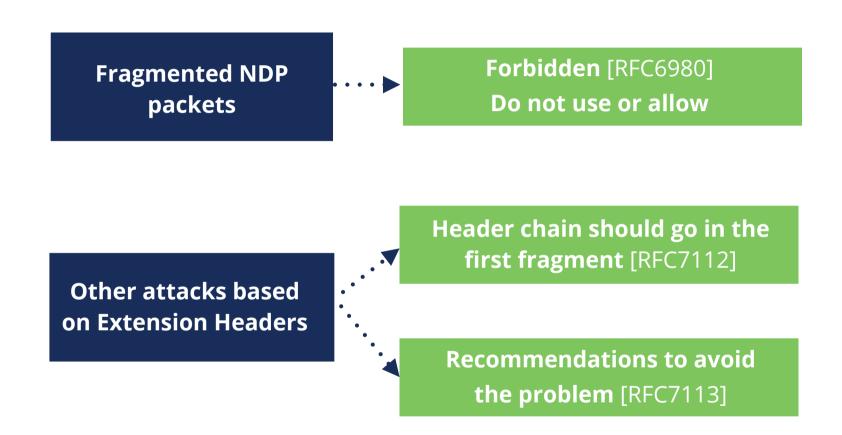
Basic IPv6 Header	Destination Options	ICMPv6: RA
Next Header = 60	Next Header = 58	

If it only looks at Next Header = 60, it does not detect the RA

Bypassing RA Filtering/RA-Guard

Using **Fragment** Extension Header

Basic IPv6 Header	Fragment	Destination Options
Next Header = 44	Next Header = 60	Next Header = 58

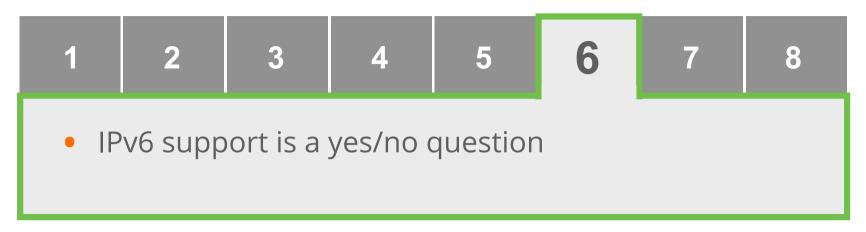

Basic IPv6 Header	Basic IPv6 Header Fragment		ICMPv6: RA
Next Header = 44	Next Header = 60	Next Header = 58	

Needs all fragments to detect the RA

Extension Headers Solutions

• **Require** security tools to inspect Header Chain properly

NDP Threats


- Neighbor Solicitation/Advertisement Spoofing
- Can be done sending:
 - 1. **NS** with "source link-layer" option changed
 - 2. **NA** with "target link-layer" option changed
 - Can send unsolicited **NA** or as an answer to **NS**

- Redirection/DoS attack
- Could be used for a "**Man-In-The-Middle**" attack

IPv6 Security Statements

Reason:

- Question: "Does it support IPv6?"
- Answer: "Yes, it supports IPv6"

Reality:

- IPv6 support **is not** a yes/no question
- Features missing, immature implementations, interoperability issues


Devices Categories (RIPE-772)

Host	Switch	Router	Security Equipment	СРЕ
IPSec (if needed)	HOST +	HOST +	HOST +	Router
RH0 [RFC5095]	IPv6 ACLs	Ingress Filtering and RPF	Header chain	Security Equipment
Overlapping Frags [RFC5722]	FHS	DHCPv6 Relay	[RFC7112]	
Atomic Fragments	RA-Guard [<i>RFC6105</i>]	[RFC8213]	Support EHs Inspection	DHCPv6 Server Privacy Issues
[RFC6946]	DHCPv6 guard	OSPFv3 Auth. [RFC4552]	ICMPv6 fine grained filtering	
NDP Fragmentation	IPv6 snooping	or / and [RFC7166]	Encapsulated	
[RFC6980] Header chain	IPv6 source / prefix guard	IS-IS	Traffic Inspection	
[RFC7112]	IPv6	[RFC5310]	IPv6 Traffic Filtering	
Stable IIDs [RFC8064][RFC7217] [RFC7136]	destination guard MLD snooping [RFC4541]	or, less preferred, [RFC5304]		
Temp. Address	DHCPv6-Shield	MBGP		
Extensions	[RFC7610]	TCP-AO [RFC5925]		
[RFC8981] Disable if not used: LLMNR, mDNS, DNS-SD, transition		MD5 Signature Option [RFC2385] Obsoleted MBGP Bogon		
mechanisms		prefix filtering		40

IPv6 Security Statements

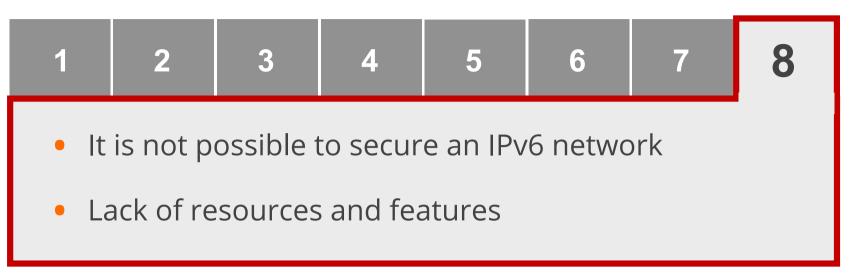
Reason:

• Networks only designed and configured for IPv4

Reality:

- IPv6 available in many hosts, servers, and devices
- Unwanted IPv6 traffic. Protect your network

- In IPv4-only infrastructure expect **dual-stack hosts**:
 - VPNs or tunnels
 - Undesired local IPv6 traffic
 - Automatic Transition Mechanisms
 - Problems with rogue RAs


Dual-stack

	$\mathbf{\nabla}$	
Bigger attack surface	Protect IPv6 at the same level as IPv4	
GUA Addresses	Filter end-to-end IPv6 properly	
Use one IP version to attack the other	Don't trust "IPv4-only"	

IPv6 Security Statements

Reason:

- Considering IPv6 completely different than IPv4
- Think there are no BCPs, resources or features

Reality:

- Use IP independent security policies
- There are BCPs, resources and features

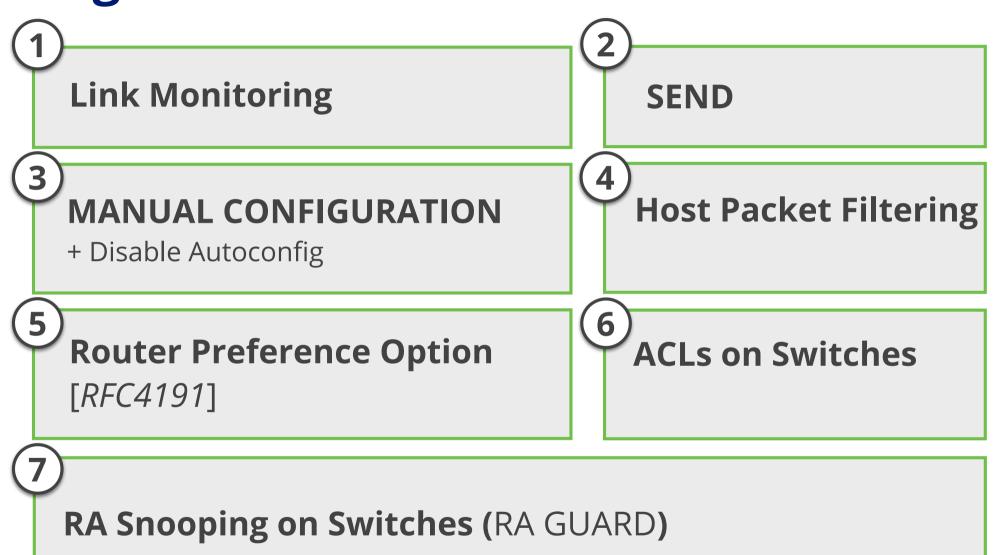
IPv6 vs IPv4

- IPv6 quite similar to IPv4, many reusable practices
- IPv6 security compared with IPv4:

No changes	with	IPv6
------------	------	------

Changes with IPv6

New IPv6 issues


Security Tools

Туре	Can be used for	Examples	
	Assessing IPv6 security	Scapy, nmap, Ostinato, TRex	
Packet	Testing implementations		
Generators	Learning about protocols		
	Proof of concept of attacks/protocols		
	Understanding attacks and security measures		
Packet Sniffers/ Analyzers	Learning about protocols and implementations	tcpdump, Scapy, Wireshark, termshark	
Analyzers	Troubleshooting		
	Assessing IPv6 security		
Specialised	Learning about protocols and implementations	THC-IPV6, The IPv6 Toolkit, Ettercap	
Toolkits	Proof of concept of attacks/protocols		
	Learn about new attacks		
Commons	Finding devices and information	nmap, OpenVAS	
Scanners	Proactively protect against vulnerabilities		
IDS/IPS	Understanding attacks and security measures		
	Learning about protocols and implementations		
	Assessing IPv6 security	Snort, Suricata, Zeek	
	Learn about new attacks		

Rogue RA Solutions

First Hop Security

- Security implemented on switches
- There is a number of techniques available:
 - RA-GUARD
 - IPv6 Snooping (*ND inspection* + *DHCPv6 Snooping*)
 - IPv6 Source / Prefix Guard
 - IPv6 Destination Guard (or ND Resolution rate limiter)
 - MLD Snooping
 - DHCPv6 Guard

Routing Protocols Authentication

	Authentication Options	Comments	
RIPng	 No authentication IPsec (general recommendation) 	 RIPv2-like MD5 no longer available IPSec not available in practice 	
OSPFv3	 IPsec [RFC4552] Authentication Trailer [RFC7166] 	 ESP or AH. Manual keys Hash of OSPFv3 values. Shared key 	
IS-IS	 HMAC-MD5 [RFC5304] HMAC-SHA [RFC5310] 	 MD5 not recommended Many SHA, or any other hash 	
MBGP	 TCP MD5 Signature Option [RFC2385] TCP-AO [RFC5925] 	 Protects TCP. Available. Obsoleted Protects TCP. Recommended 	

Securing Routing Updates

- IPsec is a general solution for IPv6 communication
 - In practice not easy to use

- OSPFv3 specifically states [RFC4552]:
 - 1. ESP must be used
 - 2. Manual Keying

• Other protocols: **No options available**

Conclusions

- Security options available for IPv6 routing protocols
- Try to use them:
 - Depending on the protocol you use
 - At least at the same level as IPv4

Learn something new today! academy.ripe.net

RIPE NCC Certified Professionals

https://getcertified.ripe.net/

Ënn	Соңы	An Críoch	پايان	Y Diwe	dd
Vége	Endir	Finvezh	վերջ	Ende	Koniec
Son	დასასრული Amaia	ר הסוף	Tmiem	Кінець	Finis
Lõpp	Sfârșit	Loppu	Slutt	Liðugt _	Крај
Kraj	النهاية	Коне			und
Fine	Fin Eiı	Fí nde	Край	Konec	Τέλος Pabaiga
Fim	Slut			Po	igas